Бензиновый двигатель внутреннего сгорания

Конструкции систем питания газовых двигателей и их работа

ВВ систему питания двигателя, работающего на сжатом газе (рис. 9), входят баллоны 1 для сжатого газа, наполнительный 5, расходный 6 и магистральный 18 вентили, подогреватель 17 газа, манометры высокого 8 и низкого 9 давления, редуктор 11 с фильтром 10 и дозирующим устройством 12, газопроводы высокого 3 и низкого 13 давления, карбюратор-смеситель 14 и трубка 19, соединяющая разгрузочное устройство с впускным трубопроводом двигателя.

Рис. 9. Схема системы питания

двигателя, работающего на сжатом газе:

1 – баллон; 2 – тройник; 3, 13 – газопроводы; 4 – крестовина; 5, 6, 18 – вентили; 7 – топливный бак; 8, 9 – манометры; 10 – газовый фильтр;

11 – газовый редуктор; 12 – дозирующее устройство; 14 – карбюратор-смеситель; 15 – топливопровод; 16 – топливный насос; 17 – подогреватель; 19 – трубка; 20 – двигатель

При работе двигателя вентили 6 и 18 открыты. Сжатый газ из баллонов поступает в подогреватель 17, обогреваемый горячими ОГ или охлаждающей жидкостью двигателя – для исключения замерзания (закупорки) дросселирующих проходных сечений данной газовой системы питания. Из подогревателя газ через фильтр 10 проходит в двухступенчатый газовый редуктор 11, где давление газа снижается до 0,9-1,15 МПа. Из редуктора через дозирующее устройство 12 газ проходит в карбюратор-смеситель 14, где образуется горючая (газовоздушная) смесь. Она под действием вакуума поступает в цилиндры двигателя. Процесс сгорания данной смеси и отвода ОГ происходит аналогично процессам в бензиновом двигателе.

Редуктор 11, кроме уменьшения давления газа, изменяет его количество в зависимости от режима работы двигателя. Указанный редуктор быстро выключает подачу газа при остановке двигателя.

Кроме основной, имеется резервная система питания топливом, обеспечивающая работу двигателя на бензине в необходимых случаях (при неисправности газовой системы, израсходовании газа в баллонах и других случаях). При этом длительная работа двигателя на бензине не рекомендуется, т.к. в резервной системе питания отсутствует воздушный фильтр, что может привести к повышенному износу двигателя. Оптимальные углы И опережения зажигания, установленные при использовании газового топлива, чаще всего не соответствуют оптимальным И бензинового двигателя.

В резервную систему питания входят топливный бак 7, топливный фильтр, топливный насос 16 и топливопровод 15.

Схема системы питания двигателя, работающего на сжиженном газе, показана на рис. 10.

Рис. 10. Схема системы питания двигателя, работающего на сжиженном газе: 1 – топливный фильтр; 2 – топливный насос; 3 – карбюратор; 4 – смеситель; 5 – испаритель; 6 – газовый фильтр; 7 – дозирующее устройство; 8 – газовый редуктор; 9, 10 – манометры; 11, 13 – вентили; 12 – баллон; 14 – двигатель; 15 – топливный бак

Сжиженный газ под давлением из баллона 12 поступает через расходный 13 и магистральный 11 вентили в испаритель 5, где он подогревается горячей жидкостью системы охлаждения двигателя. Затем газ очищается в фильтре 6, поступает в двухступенчатый редуктор 8, где давление газа снижается до атмосферного. Из редуктора газ через дозирующее устройство 7 проходит в смеситель 4, в котором готовится горючая смесь в соответствии с режимом работы двигателя.

Газовый баллон имеет предохранительный клапан, открывающийся при давлении 1,68 МПа, наполнительный вентиль и датчик уровня сжиженного газа. Баллон заполняется сжиженным газом только на 90 % объема. Это необходимо для возможности расширения газа при нагреве.

Кроме основной системы питания, двигатель, работающий на сжиженном газе, имеет резервную систему питания, аналогичную резервной системе двигателя, работающего на сжатом газе, для кратковременной работы на бензине. В резервную систему входят топливный бак 15, топливный фильтр 1, топливный насос 2 и карбюратор

Первый газовый двигатель внутреннего сгорания был разработан немецким изобретателем Н. Отто. Принцип его работы заключался в том, что горючая смесь предварительно подвергалась сильному сжатию в верхней точке положения поршня. На создание экономичного двигателя, КПД которого достигал 15 %, изобретателю потребовалось около 15 лет, он получил название четырехтактного, поскольку рабочий цикл в нем протекал за четыре хода поршня.

Центробежное сцепление

Еще одной частью, которую можно отнести к двигателю, является сцепление — механизм, передающий вращение двигателя на трансмиссию автомодели. В радиоуправляемых моделях с ДВС используется центробежное сцепление. Принцип его работы состоит в том, что пока двигатель работает на холостых оборотах, кулачки сцепления не соприкасаются с колоколом сцепления, будучи сжатыми пружиной. При увеличении оборотов двигателя под действием центробежной силы пружина растягивается, башмаки входят в сцепление с колоколом, начинают вращать его и модель трогается с места.

Сцепление HPI Baja

Комплект трёх-кулачкового сцепления

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

Бензиновый двигатель внутреннего сгорания

Карбюраторная система

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Отличие дизельного двигателя от бензинового

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела.

Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Популярные статьи  Датчик положения коленчатого вала: методы проверки, признаки неисправности, расположение

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Четырёхцилиндровый блок

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Бензиновый двигатель внутреннего сгорания

Восьмицилиндровый блок

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Устройство ДВС

Конструктивно двигатели делят, с учетом устройства и компоновки техники, на которой они установлены. Но сохраняются неизменными принципы, одинаковые для конструкции любого ДВС.

Двигатель комплектуется такими конструктивными узлами:

  • блоком цилиндров – основной частью корпуса с проемами для рабочих камер, рубашкой охлаждения (для моторов, охлаждаемых жидкостью), крепежными отверстиями для установки головок и картера, посадочными местами для коленчатого вала и прочими конструктивными элементами;
  • кривошипно-шатунной группой – с коленчатым валом, к которому крепятся шатуны, приводящие в действие поршни, двигающиеся внутри цилиндров; инерция вращения поддерживается маховиком;
  • газораспределительным механизмом – системой, подающей в камеры сгорания топливо-воздушную смесь, с отводом выхлопа; включает распределительный вал, клапана, приводимые в действие коромыслами, ремнем или цепью, соединенными с коленвалом;
  • топливной системой – подает горючее в камеры сгорания, после обогащения воздухом; включает бак, систему трубок для подвода питающей жидкости, карбюратора или инжектора (с учетом особенностей конструктивного устройства), форсунок, насоса, фильтрующего элемента;
  • смазочной системой – с подачей смазки к трущимся деталям; включает масляный насос, приводящийся коленчатым валом, систему патрубков и полостей, фильтр и поддон; предусмотрено устройство «сухого» или «мокрого» картера;
  • системой зажигания – для поджигания топливно-воздушной смеси; используется только на бензиновых двигателях, поскольку на дизельных моторах топливо с воздухом воспламеняется самостоятельно, при определенном давлении;
  • системой охлаждения – может быть воздушной или жидкостной, для снижения температуры корпуса мотора, чтобы предупредить износ и выход из строя элементов;
  • электросистемой – источником электроэнергии, необходимой для работы мотора; включает аккумуляторную батарею, генераторный блок, стартер и проводку с датчиками;
  • системой выхлопа – для удаления продуктов сгорания в атмосферу, с доочисткой этой смеси, снижением шума от работы двигателя, фильтрующим элементом.

Конструкция узлов совершенствуется, по мере появления новых материалов и конструктивных решений.

С учетом особенностей конструктивного устройства различных элементов двигателей, важно учитывать такие моменты:

  • цилиндры могут выполняться отдельно, с запрессовкой в корпус блока, или совместно с корпусом; моноблочные системы не предусматривают восстановления, в связи с тем, что нельзя заменить гильзу;
  • корпуса двигателей изготавливают из сплавов чугуна или алюминия, устойчивых к перепадам температуры и высокому давлению;
  • головка блока цилиндров выполняется с ним совместно или в виде отдельной детали; при раздельном исполнении возможно использование разных материалов для головки и блока цилиндров;
  • работа кривошипно-шатунного механизма может уравновешиваться балансирными валами, расположенными по сторонам от коленвала и нивелирующими влияние инерционных сил; в результате снижается вибрация и шум, исключаются перегрузки двигателя;
  • негативное влияние пружин при быстрой работе двигателя с механическим газораспределительным механизмом снижается за счет десмодромной системы управления мотором – со сложной конфигурацией кулачков;
  • зависание клапанов исключается легкими материалами для изготовления этих деталей и пружинных элементов, пневматическим приводом;
  • альтернатива традиционной конструкции ГРМ – гильзовый способ, разработанный Найтом; предусматривает использование взамен клапанов скользящих гильз, работающих бесшумно и долговечно; этот способ перестали использовать по причинам большого расхода смазочной жидкости, с разработкой верхнеклапанной конструкции;
  • ранние модели двигателей комплектовались не стартерами, а генераторами переменного тока (магнето), приводимыми в действие коленчатым валом; это требовало прокручивания вала двигателя для запуска;
  • вредное воздействие на экологию выхлопных газов частично снижается каталитическим нейтрализатором, окисляющим и химически преобразовывающим выхлоп;
  • электронные системы дополнительно улучшают работу двигателя; изменение фаз газораспределения изменяет нагрузку на мотор, с учетом включенной передачи, снижая потребление горючего; дезактивация цилиндров регулирует объем камер сжатия, отключая ненужные цилиндры; регулировка степени сжатия изменяет объем камер сгорания, с учетом режимов работы мотора.

Эти и другие особенности конструктивно улучшили работу двигателей внутреннего сгорания.

Виды двигателей автомобилей по типу топлива

Бензиновый двигатель внутреннего сгорания

Конструкторами разработано большое количество автомобильных двигателей в зависимости от типа смеси, количества тактов, а также физического расположения цилиндров.

Как различаются двигатели внутреннего сгорания по типу питания:

  • Бензиновые
  • Дизельные
  • Гибридные

Бензиновый двигатель — самый популярный вид двигателя среди автомобилей. Это обусловлено простой конструкцией, доступностью и дешевизной деталей на замен. Автомобили с данным видом двигателя чаще остальных встречаются на ДОПах.

Подача смеси для бензинового двигателя:

Существует 2 вида доставки топлива в бензиновый мотор. Первый — карбюратор. Смесь из бензина и воздуха готовится в карбюраторе в определенных (зависит от режима) пропорциях и подаётся во впускной коллектор. Данный вид подачи топлива являлся самым популярным на протяжении многих лет из-за простоты конструкции и возможности ремонта «на месте».

Бензиновый двигатель внутреннего сгорания

Преимущества карбюраторного ДВС:

  • Низкая цена ремонта
  • Прост в конструкции
  • Дешевизна обслуживания

Но также следует упомянуть что карбюраторная система подачи считается устаревшей ввиду ее не экономичности, трудности обслуживания и настройке.

Недостатки карбюраторного двигателя:

  • Сложность настройки
  • Чувствителен к температурным перепадам
  • Низкая экологичность
  • Нестабилен

Большинство видов двигателей с карбюратором не соответствуют Евро-3 и выше.

Популярные статьи  Авто форум

Инжекторная система питания

Бензиновый двигатель внутреннего сгорания

На смену карбюратору пришла инжекторная система впрыска. Она в свою очередь делится на моновпрыск и распределённый впрыск горючей смеси. На большинстве двигателей внутреннего сгорания используется именно распределённый впрыск. Бензин из бака через магистраль попадает в топливную рампу, далее через форсунки во впускной коллектор, который отдельно ведёт к каждому цилиндру. Таким образом на каждую секцию отведена отдельная форсунка.

Стоит упомянуть, что существуют конструкции, когда форсунка подаёт топливо прямиком в камеру сгорания. Такой вид двигателя внутреннего сгорания является гораздо более точным в плане дозирования смеси, при котором достигается максимальный кпд бензинового ДВС.

Преимущества инжекторного двигателя:

  • Высокая стабильность
  • Количество вредных выбросов уменьшается до 70%
  • Экономичность
  • Более мощный
  • Не чувствителен к перепадам температур

Инжекторная система впрыска имеет большое количество плюсов для автолюбителей из больших городов, где имеются профессиональные СТО или официальные дилеры, которые смогут провести правильную диагностику и ремонт. Однако за пределами города, если у вас возникнут проблемы с инжектором, скорее всего вы ничего не сможете сделать, в отличие от карбюратора.

Недостатки инжекторного двигателя:

  • Трудный ремонт и диагностика
  • Качество бензина должно быть не менее А-92
  • Очень высокая стоимость замены узлов
  • Дефицит квалифицированных специалистов по ремонту

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом. Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками. Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Электронный топливный впрыск

Пожалуй, наиболее серьезным шагом в процессе эволюции автомобильных моторов является разработка системы электронного топливного впрыска. По сравнению с механическими аналогами, электронные системы позволяли гораздо точнее контролировать количество смеси, подаваемой в камеру сгорания. Первоначальные технологии предусматривали одноточечную конструкцию электронного впрыска, на смену которой пришли системы многоточечного и даже многопортового впрыска. Впрочем, многопортовый впрыск сегодня практически не используется ввиду сложности и дороговизны конструкции.

Сегодня в конструкции инжекторных моторов повсеместно применяются датчики кислорода, именуемые лямбда-зондами. Такие датчики устанавливаются в системе выпуска отработанных газов, выполняя функцию контроля эффективности сгорания топлива в каждом цикле. Многие автомобили располагают двумя и более кислородными датчиками, устанавливаемыми до и после каталитического нейтрализатора. При всех плюсах, лямбда-зонды обладают существенным недостатком, особенно заметным в российских условиях эксплуатации автомобилей. Эти устройства чрезвычайно чувствительны к качеству топлива и при использовании некачественного бензина могут выйти из строя уже после нескольких тысяч пробега.Помимо двигателей, работающих по принципу цикла Отто, в мире современного автомобилестроения находят применение и другие технологии. Так, в качестве альтернативы можно назвать моторы, работающие по принципу цикла Аткинсона. Правда, такие двигатели не столь распространены ввиду меньшей мощности при прочих равных характеристика. Как правило, бензиновые двигатели, работающие по циклу Аткинсона, используются в гибридных силовых установках.

Сегодня, как и сто лет назад, конструкторы продолжают трудиться над повышением эффективности автомобильных двигателей. Так, уже возможно совсем скоро в свечах зажигания будут использоваться лазерные технологии, а для изготовления дроссельной заслонки будут применяться альтернативные материалы.

Типы ДВС: Рядный, V образный и оппозитный двигатель. Какой лучше?

В мире существует большое количество видов моторов не только по виду горючей смеси, но и по типу расположения цилиндров. Ниже приведен перечень самых популярных типов двигателей.

Рядный двигатель

Бензиновый двигатель внутреннего сгорания

Рядные ДВС считаются классическими, так как именно такой тип был применён впервые в ДВС. Соответственно названию, цилиндры расположены в ряд, и приводят в движение 1 коленчатый вал. Также ГБЦ одна для всех камер сгорания. Количество цилиндров может колебаться от одного до десяти. На практике десятицилиндровые ДВС оказались очень сложными при производстве, поэтому наибольшее распространение получили следующие:

  • Одноцилиндровые
  • Двухцилиндровые
  • Четырехцилиндровые
  • Шестицилиндровые

К достоинствам рядных типов двигателя можно отнести простоту в обслуживании и малые габариты. Такие моторы не идеально сбалансированы, однако это не мешает им пользоваться огромной популярностью у производителей и автолюбителей.

V образный двигатель

Бензиновый двигатель внутреннего сгорания
°°°°°

Одним из главных достоинств v двигателя является его компактность.

Из минусов можно выделить:

  • Сложность конструкции
  • Повышенная вибронагруженность на 2-х и 4-х цилиндровых ДВС
  • Более дорогой ремонт по сравнение с рядной «четвёркой»

V образные моторы очень востребованы в различных отраслях. Существуют концерны, которые выпускают только данный вид двигателей.

Оппозитный двигатель

Бензиновый двигатель внутреннего сгорания

Виды оппозитных двигателей: — ОРОС — «Боксер»

ОРОС — В данной конструкции поршни попарно перемещаются по одному цилиндру, двигаясь друг навстречу другу.

«Боксер» — Поршни располагаются друг перед другом, словно боксёры в бою. Когда один поршень находится в ВМТ(верхняя мёртвая точка) его парный поршень находится в НМТ(нижняя мёртвая точка). При работе они словно «обмениваются ударами» из-за чего и получили название.

Из плюсов оппозитного ДВС можно выделить следующее:

  • Отсутствие вибрации
  • Низкий центр тяжести
  • Малые габариты
  • Большой ресурс (300-500 тыс. км до первого капитального ремонта)

Минусы оппозитного двигателя:

  • Высокая стоимость обслуживания
  • Дефицит СТО, где есть специалисты по оппозитным моторам
  • Сложность обслуживания
  • Дороговизна запчастей

BMW M52

  • Установлен в: BMW 3 E36/E46, 5 серии E39, 7-серии E38, Z3
  • Годы производства: 1994-2000
  • Объем: 1991-2793 см3
  • Мощность макс.: 150-193 л.с.
  • Срок годности: около 500 тысяч. км

Основные конструктивные особенности:

  • – алюминиевый блок
  • – двигатель цепной
  • – переменные фазы газораспределения (Vanos)
  • – 24 клапана
  • – 6 цилиндров,
  • многоточечный впрыск.

Бензиновый двигатель внутреннего сгоранияBMW

Популярен и используется во многих моделях BMW. Двигатель прочный и стойко переносит даже серьезное небрежное обращение и расходные материалы или необходимость езды на LPG. Лучший вариантом считается самая мощная, 193 л.с. версия M52B28TU объемом 2.8 л, которая появилась в модельном ряду в 1998 году. Двигатели M52 были доступны как двухлитровые (M52B20, 150 л. с.), так и моторы 2.5 (M52B25, 170 л.с.).

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной (читайте о том, как работает турбина).

Популярные статьи  Полуось

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

За счёт чего происходит увеличение мощности двигателя? Читайте об этом подробнее в любопытном материале нашего эксперта.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

КПД и мощность электродвигателя

КПД и мощность – это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую. Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель

Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель

Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач. Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу

Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии

Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем

Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1где η – КПД

P2- полезная механическая мощность электромотора, ВтP1- потребляемая двигателем электрическая мощность, Вт;

Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 – это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 – 0,95 . Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами. Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность – это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия . Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье . При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей .

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: