Немного истории
Ранние разработки на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования.
Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным, дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование привычного для нас сегодня жидкого топлива. Стоит учесть, что такое топливо не может воспламениться без участия воздуха.
Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях. Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов.
Для получения качественной топливно-воздушной смеси горючее в первом устройстве нагревалось, а его пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения. Разработки в данной области продолжились, а уже через год талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.
Разнообразие инжекторных систем
В современности существует два вида инжекторов. Первый относится к системам моновпрыска. В данном случае одна форсунка осуществляет подачу топлива в коллектор на все цилиндры. Среди автомобилистов подобная система более известна, как электронный карбюратор. Однако, современные производители уже отошли от данной технологии, и встретить подобную систему можно только в старых моделях.
Вторая система подразумевает распределённый впрыск, то есть многоточечный впрыск. В данном случае устанавливается отдельная форсунка во впускном тракте каждого цилиндра и каждая из них осуществляет подачу определённого объёма топлива в камеру сгорания.
По способу распределения впрыска подобные системы делятся на:
- Одновременную. Система встречается очень редко, но всё же имеет место быть. Ее особенностью является то, что всего за один оборот коленчатого вала абсолютно все форсунки отрабатывают в одно и тоже время.
- Попарную параллельную. В данном случае форсунки работают по парам. Другими словами, за один оборот коленчатого вала только одна пара форсунок работает.
- Последовательную. Данный вид распределения впрыска является самым распространенным. Особенностью является то, что за один оборот вала каждая форсунка по разу открывается перед тактом впуска. При этом регулировка происходит отдельно.
Функционирование отдельных узлов и оборудования в целом
Бензин подаётся из бака под давлением расположенным там электрическим насосом. Электромотор и насосная часть работают в среде бензина, им же охлаждаются и смазываются. Пожарная безопасность обеспечивается недостатком необходимого для воспламенения кислорода, переобогащённая бензином смесь с воздухом электрической искрой не поджигается.
Пройдя двухступенчатую фильтрацию, бензин поступает в топливную рампу. Давление в ней поддерживается стабильным с помощью регулятора, встроенного в насос или рампу. Излишки сливаются обратно в бак.
В нужный момент на электромагниты форсунок, закреплённых между рампой и впускным коллектором, от драйверов ЭСУД поступает электрический сигнал на открытие. Топливо под давлением впрыскивается фактически на впускной клапан, одновременно распыляясь и испаряясь. Поскольку перепад давлений на форсунке поддерживается стабильным, то количество подаваемого бензина определяется временем открытия клапана форсунки. Изменение разрежения в коллекторе учитывается программой контроллера.
Время открытия форсунки является расчётной величиной, вычисляемой на основании данных, получаемых от датчиков:
- массового расхода воздуха или абсолютного давления в коллекторе;
- температуры всасываемого газа;
- степени открытия дроссельной заслонки;
- наличия признаков детонационного горения;
- температуры двигателя;
- частоты вращения и фаз положения коленчатого и распределительных валов;
- наличия кислорода в выхлопных газах до и после каталитического нейтрализатора.
Кроме того, ЭСУД по шине данных принимает информацию от прочих систем автомобиля, обеспечивая реакцию двигателя в различных ситуациях. В программе блока непрерывно поддерживается моментная математическая модель двигателя. Все её константы записаны в многомерных картах режимов.
Помимо непосредственно управления впрыском, система обеспечивает работу иных устройств, катушек и свечей зажигания, вентиляции бака, стабилизации теплового режима и многих других функций. ЭСУД имеет оборудование и программное обеспечение для ведения самодиагностики и предоставления водителю информации о появлении ошибок и неисправностей.
В настоящее время используется только индивидуальный фазированный впрыск по каждому цилиндру. В прошлом форсунки работали одновременно или попарно, но это не оптимизировало процессы в двигателе. После введения датчиков положения распредвалов каждый цилиндр получил отдельное управление и даже диагностику.
Достоинства карбюратора
Преимуществом карбюратора является его простота. Даже самые примитивные конструкции на старых мотоциклах и автомобилях исправно выполняли свою роль по питанию двигателей.
Камера с поплавком для стабилизации напора на топливном жиклёре, воздушный канал эмульгатора с воздушным жиклёром, распылитель в диффузоре и всё. По мере увеличения требований к моторам конструкция усложнялась.
Однако принципиальная примитивность давала настолько важное достоинство, что и до сих пор карбюраторы кое-где сохранились, на тех же мотоциклах или внедорожной технике. Это надёжность и ремонтопригодность
Сломаться там нечему, единственной проблемой может стать засорение, но разобрать и прочистить карбюратор можно в любых условиях, запчасти не потребуются.
Ускорительный насос
Ускорительный насос предназначен для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки.
В корпусе карбюратора имеется цилиндр 8, в котором помещен поршень 7 насоса. Цилиндр соединен с поплавковой камерой каналом, в начале которого размещен обратный клапан 9. В выходном канале имеется игольчатый клапан 10.
Поршень приводится в действие механизмом привода дроссельной заслонки посредством рычага 13, поводка 12, тяги 11 и нажимной пластины 4, которая действует на поршень через пружину 5. При плавном открытии дроссельной заслонки поршень насоса медленно опускается и постепенно выжимает бензин из цилиндра в поплавковую камеру через открытый обратный клапан 9.
При резком открытии дроссельной заслонки поршень быстро опускается и выжимает бензин из цилиндра. При этом бензин приподнимает обратный клапан, который перекрывает входное отверстие, препятствуя выходу бензина обратно в поплавковую камеру. Бензин, приподнимая игольчатый клапан 10, впрыскивается через жиклер 3 в смесительную камеру карбюратора и обогащает горючую смесь.
Основные преимущества инжекторной системы
Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:
- Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
- Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
- Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.
Ускорительный насос
Ускорительный насос реализует возможность впрыска нужного количества и состава смеси во время резкого ускорения, когда основная система дозирования не справляется, так как должна обеспечивать функциональную подачу только при медленном раскрытии дроссельной заслонки. Целью насоса является быстрое и своевременное обогащение состава, а это способствует предотвращению «провала» во время ускорения.
Специально для этого сделан канал, со множеством шариковых клапанов, которые снабжены цельной мембраной. Соединительная подводка к клапану идет напрямую от дросселя. Когда происходит спонтанное воздействие на акселератор, шарики расширяются и позволяют клапанному отверстию раскрыться, а мембрана осуществляет выдавливание нужного количества эмульсионной смеси в распылитель, который расположен впереди диффузора.
Системы питания автомобиля следует классифицировать по представленным признакам:
• способу подачи топлива , может быть как непрерывный, так и прерывистый;• типу дозирующих узлов — (плунжерные насосы,форсунки, распределители, регуляторы давления;• по способу регулировки горючей смеси, и ее количества — пневматическое, механическое, электронное;• по параметрам смесеобразования — разряжению во впускной системе, углу поворота дроссельной заслонки, расходу воздуха.
Впрыск топлива обеспечивает более точное распределение по цилиндрам из за отсутствия сопротивления потоку воздуха на впуске. Более высокий коэффициент наполнения цилиндров обеспечивает получение более высокой мощности двигателя. При впрыске возможно большее перекрытие клапанов. Лучшая продуваемость и равномерность смесеобразования по цилиндрам снижают температуру деталей, что в свою очередь позволяет уменьшить октановое число топлива на 2—3 единицы, т. е. поднять степень сжатия без опасности детонации.Система впрыска К-Jetronic, которую разработала фирма «BOSCH» работает по принципу механической системы, где обеспечивается постоянный впрыск топлива и включает в себя топливный бак, пусковую электромагнитную форсунку. топливный электронасос, топливный фильтр, накопитель топлива, расходомер воздуха с напорным диском, регулятор давления топлива, регулятор управляющего давления воздуха, дозатор распределительного топлива,форсунки. Количество смешиваемого воздуха и топливо строго в соотношении 1 к 14,7. Во время работы двигателя топливный электро насос закачивает бензин из бака и нагнетает его с давлением 0,5 МПа) , а потом через накопитель и попадает в фильтр к дозатору распределителя. После этого топливо постепенно подается к форсункам, установленным перед впускными клапанами во впускном трубопроводе. Форсунки призваны непрерывно распылять топливо. Если при карбюраторном питании дроссельная заслонка регулирует количество подаваемой в цилиндры горючей смеси, то при системе впрыска дроссельная заслонка регулирует только подачу чистого воздуха. Для того чтобы установить требуемое соотношение между количеством поступающего воздуха и количеством впрыскиваемого бензина, используется расходомер воздуха с напорным диском и лоза-тор-распределитель топлива.При пуске холодного двигателя электронасос быстро повышает давление топлива. Если температура двигателя менее 35 °С, термореле включает пусковую форсунку с электромагнитным управлением, и она впрыскивает дополнительное количество топлива. Одновременно включается добавочный клапан воздуха. Этим обеспечивается надежный пуск холодного двигателя и устойчивая его работа на холостом ходу. Продолжительность работы пусковой форсунки определяет термореле. При температуре выше 35 °С она отключается.Во время работы двигателя с частичными нагрузками горючая смесь начинает обогащаться или обедняться. Самое главное, чтобы пропорция воздуха и топлива обеспечивала хорошее смесеобразование в определенных значениях, что бы полностью соответствовала режимам работы двигателя. В случае большого давления , сопротивление на плунжере увеличивается , а смесь в свою очередь обедняется. В другом случае сопротивление перемещению плунжера начинает уменьшается и смесь начинает обогащаться.Во время резкого открытия дроссельной заслонки обогащение горючей смеси обеспечивается еще секундной реакцией напорного диска.
Система впрыска топлива «К-Jetronic»:
1 — топливный бак; 2— топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5 — регулятор управляющего давления; 6 — термореле; 7 — пусковая электромагнитная форсунка; 8 — форсунка впрыска; 9 — клапан добавочного воздуха; 10 — дроссельная заслонка; 11 — регулировочный винт системы холостого хода; 12 — расходомер воздуха; 13 — дозатор-распрелитель; 14 — регулятор давления топлива; а — канал подвода топлива к рабочим форсункам; 6 — канал подвода топлива к дозатору-распределителю; в — канал подвода топлива к пусковой форсунке с электромагнитным управлением; г — канал слива топлива в бак; д — канал толчкового клапана; е — канат управляющего давления.
Главная дозирующая система и система холостого хода системы впрыска «К-Jetronic»: 1 — топливный бак; 2 — топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5— регулятор управляющего давления топлива; б — форсунка (инжектор); 7— регулировочный винт системы холостого хода; 8 — дроссельная заслонка; 9 — напорный диск расходомера воздуха; 10 — дозатор-распределитель топлива; 11 — регулятор давления питания; а — канал подвода топлива к форсункам; б — канал управляющего давления; в — канал толчкового клапана; г — канал слива топлива в бак; д — канал подвода топлива к дозатору-распределителю.
Регулировка карбюратора К 36
Перед тем как вносить изменения в настройку карбюратора следует провести диагностику других важных узлов. Предварительно проверяется правильность установки момента зажигания, состояние свечей, и чистится воздушный фильтр. Так же следует проверить состояние тросов управления дросселем и корректором. Они должны иметь рабочий люфт в 1.5 – 2 мм. который регулируется изменением положения натяжного винта на оконцевателе рубашки троса. Только убедившись в исправной работе и настройке всех этих узлов, можно производить регулировку.
Для выполнения регулировки карбюратор К 36 имеет четыре органа – это винт настройки холостого хода, винт качества горючей смеси, главный топливный жиклер и конусообразная игла дросселя.
Настройка происходит следующим образом:
- Первым этапом производится регулировка холостого хода и необходима она для обеспечения равномерной работы двигателя на малых оборотах в прогретом состоянии.
- Во время регулировки следует закрыть топливный корректор. Затем, закрутить винт количества смеси примерно на 3.5-4 витка и завести мотор. После прогрева путем манипуляций с винтом количества нужно выставить минимальные обороты коленвала, при которых мотор работает стабильно. Далее вкрутить винт холостых оборотов до тех пор, пока не нарушиться стабильность работы мотора. Следом за этим нужно постепенно выкрутить этот же винт до установки бесперебойной работы силового агрегата. В конце винтом количества нужно опустить дроссельную заслонку для уменьшения холостых оборотов.
- Для проверки правильности настроек нужно на заведенном моторе провернуть ручку газа примерно наполовину, а затем резко отпустить. Во время такой манипуляции мотор должен работать без перебоев и не глохнуть.
Корректировка средних оборотов.
За работу мотора в среднем диапазоне оборотов (примерно от 1/4 до 3/4) отвечает запорная игла в карбюраторе
Важно, что при полном открытии дросселя положение дозирующей иглы не влияет на работу мотора
Суть настройки заключается в изменении положения конусной иглы в заслонке дросселя. Для этих целей игла имеет специальные кольцевые проточки, благодаря которым ее, возможно, поднять или опустить, не используя при этом обычное замковое крепление.
При поднятии иглы в верхнее положение происходит обогащение горючей смеси, и при ее опускании наоборот уменьшается.
Если при проверке работы происходит эффект «обратки» (хлопок, вспышка горючей смеси в карбюратор через канал подачи топлива) это говорит о том, что иглу следует приподнять еще на 1-2 деления, а при появлении копоти на электродах свечей – ее нужно опустить. Правильно настроенная система должна работать размеренно, без перебоев, перегревов и потреблять умеренное количество бензина.
Настройка работы мотора на полных оборотах
Достижение адекватной работы мотора на полных оборотах достигается путем регулировки главного топливного жиклера, либо его заменой. А для более точной регулировки в конструкции предусмотрена вращающаяся манетка топливного корректора
Важно, что на модели К 36 в отличие от более ранней К 28, для обеднения смеси нужно закрутить винт регулировки качества, а для обогащения – выкрутить. Так же и с корректором, все регулировки происходят в зеркальном порядке
Регулировка равномерного распределения горючей смеси между рабочими цилиндрами.
На мотоциклах имеющих два рабочих цилиндра иногда появляется проблема с неравномерным распределением горючей смеси между ними. Появляется такая проблема, как правило, ввиду несимметричности впускного коллектора. Для этого на карбюраторах данной серии устанавливается регулятор, который размещается между карбюратором и впускным коллектором и служит для принудительной регулировки потока топливно — воздушной эмульсии. Для настройки нужно повернуть флажок в нужную сторону – для обогащения смеси для левого цилиндра – влево, для правого – вправо.
После проведения всех этих манипуляций настройку карбюратора можно считать выполненной.
Карбюратор К 36 характеристики:
Далее рассмотрена базовая модель карбюратора без его модификаций.
Диаметр камеры смесителя | 26 мм. |
Диаметр диффузора | 24 мм. |
Масса поплавка | 8,8 г. |
Пропускная способность главного жиклера |
180 см³/мин. |
Диаметры отверстий жиклеров топливного жиклера холостого хода |
0,5 мм. |
Воздушного жиклера холостого хода | 0,9 мм. |
Жиклера корректора | 0,7 мм. |
Рабочая масса карбюратора | 0,6 кг. |
Устранение неполадок в карбюраторной системе
Когда протекает бензин, а давление соответствует норме, тогда необходимо искать неполадку в поплавковой камере. В основном, ее заменяют на новую.
При наличии запаха и нагара на свечах, рекомендуется обратить внимание на поплавок. Это возникает при не отрегулированном поплавке, чрезмерном давлении бензина либо присутствует неполадка в поплавковой камере. Когда на холостом ходу мотор автомобиля работает нестабильно, то чтобы найти поломку, необходимо проверить, нет ли в карбюраторе коррозийных изменений либо загрязнений
В последнем случае его необходимо тщательно почистить
Когда на холостом ходу мотор автомобиля работает нестабильно, то чтобы найти поломку, необходимо проверить, нет ли в карбюраторе коррозийных изменений либо загрязнений. В последнем случае его необходимо тщательно почистить.
Ремонт, тюнинг и установка карбюратора
Краткая история появления
Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.
Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.
Преимущества и недостатки карбюраторов
Про ужасы вечного ремонта карбюратора не слышал только глухой. А что на самом деле? Какие же плюсы у этого устройства и есть ли смысл вообще с ним иметь дело? Как ни странно прозвучит это в наш технологичный век, но карбюратор имеет несколько серьезных преимуществ.
- Простота конструкции. Нет, речь не о том, что это очень уж простой механизм. Но по сравнению с электронной начинкой сегодняшних автомобилей, карбюратор на порядок проще для ремонта, обслуживания и даже эксплуатации. В большинстве карбюраторов нет никакой электроники, только механические устройства, а значит, человек с «прямыми руками» может и сам заниматься его ремонтом и обслуживанием. Об этом хорошо помнит «старая гвардия» — наши родители, привыкшие копаться в своих «ненаглядных» Жигулях и Запорожцах.
- Ремонтопригодность. Всё, что ломается в карбюраторе, можно починить без «лишней крови». Необходимые запчасти можно купить (есть производители, до сих пор выпускающие ремкомплекты. А почему бы и нет?).
- При работе с некачественным топливом карбюратор оказывается гораздо живучей и стабильней, чем инжектор. И вообще, он не слишком требователен к чистоте, а если и засоряется, то подлежит простой чистке в домашних («гаражных») условиях.
- Небольшое количество воды, попавшее в карбюратор, не причинит ему вреда, в отличие от инжектора. Правда, со временем он потребует чистки и калибровки.
- И, наконец, карбюратор не требует подключения к электросети, датчикам, процессору и прочим «радостям» цивилизации. Он работает исключительно от энергии всасываемого двигателем воздуха, а значит, был оптимальным вариантом для установки на старые автомобили, где вообще не было электроники.
Но есть и недостатки иза которых карбюраторные автомобили в конце концов сошли с мировой арены автомобилестроения.
- Технологии требовали систему подачи топлива с гибкой подстройкой, а не с постоянными параметрами, чтобы минимизировать потребление топлива (которое раньше никто особо не считал). Поэтому на смену карбюратору пришла инжекторная система, которая до сих пор развивается и совершенствуется.
- Второй значительный минус – зависимость карбюратора от погодных условий. В холодное время года внутри собирается конденсат, мешающий работе, в зимний период есть риск обледенения внутренней части. При этом летняя жара тоже не дает ему работать стабильно из-за активного испарения – начинаются сбои в подаче смеси.
- Ну и третий недостаток — это значительно ниже экологические показатели, по сравнению с инжектором. В современной борьбе за экологию карбюраторные автомобили просто не выдерживают никакой критики, так как вредные выбросы у них значительно выше.
Работа системы питания двигателя
Если вкратце рассмотреть работу системы питания двигателя, то выглядит она следующим образом.
Топливо (в данном случае бензин) за счет разрежения воздуха, создаваемого в системе при движении поршня от ВМТ к НМТ, а также с помощью топливного насоса, поступает в карбюратор автомобиля, проходя через фильтры. Топливный насос подает бензин из бака. Топливные насосы подразделяются на электрические и механические. Механические топливные насосы устанавливаются на автомобилях с карбюраторными силовыми агрегатами. Автомобили, оборудованные электронным впрыском, оснащены электрическим насосом. В карбюраторе пары бензина смешиваюется с поступающим воздухом, образуя топливно-воздушную смесь, которая и направляется в цилиндр. После совершения рабочего цикла (сгорания смеси), поршень, двигаясь вверх, выдавливает отработавшие газы через выпускной клапан, которые в конечном итоге выпускаются в атмосферу.
Работа системы питания двигателя с системой впрыска (инжекторной) происходит аналогичным образом.
Рабочие режимы системы питания двигателя
В зависимости от дорожных условий и целей водитель может использовать разные режимы езды. Им соответствуют и определенные рабочие режимы системы питания двигателя, каждому из которых принадлежит топливно-воздушная смесь особого состава. Для каждого режима работа системы питания двигателя будет иметь свои особенности.
- Качество смеси будет богатым при запуске холодного мотора. Потребление воздуха при этом минимальное. В данном режиме возможность движения категорически исключается. В противном случае это вызовет повышенное потребление топлива и износ деталей двигателя.
- Состав смеси будет достаточно обогащенным при использовании «холостого хода», который применяется во время движения «накатом» или работе включенного мотора в прогретом состоянии.
- Состав смеси будет обедненным при передвижении с частичными нагрузками.
- Состав смеси также будет обогащенным в режиме полных нагрузок при езде на высокой скорости.
- Состав смести будет обогащенным, максимально приближенным к богатому, при езде в условиях резкого ускорения.
Выбор рабочих условий системы питания двигателя должен быть оправдан потребностью движения в определенном режиме.
Принцип работы простейшего карбюратора
Процесс получения смеси воздуха с мелкораспыленным и частично испаренным бензином называется карбюрацией, а прибор, в котором происходит этот процесс — карбюратором. На поршневых двигателях устанавливаются карбюраторы пульверизационного типа; их принцип действия основан на том, что вследствие большой скорости воздуха (40-130 м/с), проходящего через смесообразующее устройство, струя бензина разбивается на мельчайшие частицы с образованием паро-воздушной горючей смеси.
Простейший карбюратор (рис.37) состоит из поплавковой камеры 7, жиклера 6, его распылителя 15, диффузора 16, смесительной камеры 17 и дроссельной заслонки 5. По топливопроводу 10 топливо из бака поступает в поплавковую камеру 7; с помощью поплавка 8 и игольчатого клапана 9 в ней поддерживается постоянный уровень топлива. Чтобы исключить подтекание топлива при неработающем двигателе, уровень топлива должен быть на 1,5-2 мм ниже среза распылителя.
Жиклер 6 имеет калиброванное отверстие, рассчитанное на истечение через распылитель 15 определенного количества топлива в диффузор 16. На истечение топлива через распылитель влияют не только размеры калиброванного отверстия жиклера и уровень топлива в поплавковой камере, но и перепад давлений, поэтому для поддержания атмосферного давления в поплавковой камере сделано отверстие 11.
В процессе рабочего цикла двигателя при такте впуска, когда поршень 1 движется вниз, в цилиндре 2 создается разрежение, которое через открытый впускной клапан 3 передается в газопровод 4. Под действием этого разрежения поток воздуха, пройдя воздухоочиститель 12 и полностью
открытую воздушную заслонку 14, поступает в диффузор 16, имеющий в средней части сужение, что увеличивает скорость воздушного потока и, следовательно, разрежение у среза распылителя. Под действием разности давлений в смесительной и поплавковой камерах топливо вытекает из распылителя и вследствие большой скорости воздуха интенсивно размельчается, затем, испаряясь, смешивается с ним, образуя паровоздушную горючую смесь. Количество и качество горючей смеси, поступающей в цилиндры двигателя, регулируют изменением положения дроссельной заслонки. При пуске двигателя проводное сечение воздушного патрубка 13 уменьшают, частичным или полным закрытием воздушной заслонки, в результате чего увеличивается разрежение в смесительной камере, а следовательно, и количество топлива, поступающего в распылитель.
Рассмотренный простейший карбюратор с одним жиклером может обеспечить необходимый состав смеси лишь для одного определенного режима работы, но эксплуатационные режимы работы карбюраторных двигателей отличаются большим разнообразием, поэтому такой карбюратор практически непригоден для автомобильных двигателей. Однако по принципу элементарного карбюратора работают основные смесеобразующие системы и устройства современных карбюраторов. К таким системам и устройствам относятся система холостого хода, главная дозирующая система, экономайзер, ускорительный насос и пусковое устройство.
Система холостого хода предназначена для получения богатой горючей смеси с a= 0,6¸0,8, необходимой для устойчивой работы двигателя без нагрузки при малой частоте вращения коленчатого вала.
Главная дозирующая система служит для приготовления горючей смеси обедненного состава с a=1,05¸1,15 при малых и средних нагрузках. В эту систему входят устройства для компенсации (обеднения) состава горючей смеси пневматическим торможением топлива, регулированием разрежения в диффузоре и взаимодействием нескольких жиклеров.
Все эти устройства необходимы для получения экономичной работы двигателя при изменяющихся нагрузках и частотах вращения коленчатого вала.
Экономайзер обеспечивает дополнительную подачу топлива на режимах работы двигателя, близких к полной нагрузке, при открытии дроссельной заслонки более чем на 3/4. Это устройство позволяет получить максимальную мощность двигателя путем обогащения обедненной горючей смеси, поступающей из главного дозирующего устройства.
Ускорительный насос предназначен для кратковременного обогащения состава горючей смеси путем принудительной подачи дополнительного количества топлива при резком увеличении нагрузки.
Пусковое устройство служит для создания богатой горючей смеси (a= 0,4¸0,6), необходимой для пуска холодного двигателя. К этому устройству относится воздушная заслонка с автоматическим клапаном.
Принцип действия перечисленных выше смеседозирующих систем рассмотрим на примерах устройства и работы современных карбюраторов, устанавливаемых на двигателях грузовых и легковых автомобилей.
Система датчиков инжекторных двигателей
Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.
- Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
- Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
- Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
- Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
- Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
- Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
- Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
- Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.